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Abstract: Practical protocols have been developed for the acquisition of ulosyl bromides of 
type II1 from L-rhamnose, i.e. 6-deoxy-ct-E-arabino-2-ketohexosyl bromides 6 - 8. They have 
high potential as indirect 13-L-rhamnosyl donors, as they undergo 13-specific glycosidations 
under Koenigs-Knorr conditions, and carbonyl reductions of the resulting 13-L-ulosides 
proceed with high ~3-L-rhamno selectivity. © 1997 Elsevier Science Ltd. 

For the generation of 13-D-mannosidic linkages, the ulosyl bromide approach I has proved highly 

expedient, since the 2-oxo-glycosyl (glycos-ulosyl) bromides of type I, e.g. 1 - 5 2-4, are well accessible from 

glucose and constitute efficient ,,indirect" 13-D-mannosyl donors as they undergo 13-specific glycosidations 
• . 2-4 under Koenigs-Knorr condmons , and the resulting 13-D-ulosides are reduced to the 13-D-mannosides II with 

high selectivities, reaching 20:1 to 50:1 manno/gluco ratios in cases with 3-O-benzyl groups 3. Accordingly, the 
3-O-benzyl-protected ulosyl bromides 4 and 5 have quite advantageously been applied to the synthesis of a 
number of fairly complex trisaccharides with ~-D-mannose units 4'5 as well as a bioactive ~-D-mannosylated 
fungal metabolite 6. 

In view of the various bacterial antigens containing 13-L-rhamnopyranose units 7, ulosyl bromides of type 

III, i.e. 6-deoxy-L-enantiomers of I, would provide, if fairly well accessible, an expedient protocol for the 
straightforward synthesis of 13-L-rhamnosides which have the additional advantage to accumulate with a free 
2-OH amenable to direct further glycosylation. As a consequence, we have opted to evaluate this concept and 
here present practical syntheses of the ulosyl bromides 6 - 8 from L-rhamnose, as well as proof of their utility 
as indirect 13-L-rhamnosyl donors. 
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The practical acquisition of the indirect [3-L-rhamnosyl donors 6-  8 relied on L-rhamnose as a most 
suitable, readily available starting material, and on the 2-acyloxy-L-rhamnals 17 - 19 as key intermediates, as 
these were expected to smoothly elaborate the desired ulosyl bromides by brief exposure to NBS/methanol 2'3. 

The preparation of the benzoyl-protected C~-L-rhamnosulosyl bromide 6 comprised the conversion of 
• - . 8 a  L-rhamnose - by molybdate-catalyzed C-2-eplmenzatlon , benzoylation, and HBr/HOAc treatment 8b, feasible 

in 48 % overall yield - into the 6-deoxy-L-glucosyl bromide 15, in which HBr-elimination to the 
2-benzoyloxy-L-rhamnal 18 9 could smoothly be effected by DBU treatment. Subsequent exposure to 

NBS/methanol in dichloromethane (30 min, 25 °C) provided the desired 6 in crystalline form 9 and in quite 

satisfactory overall yield (39 %) for the five steps from L-rhamnose. 
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The 3,4-di-O-benzyl-blocked ulosyl bromide 7 similarly required a five-step sequence from L-rhamnose, 
involving conversion into its acetobromo derivative 9 l0 and then into orthoester 13 by treatment with 

methanol/lutidine I I. Subsequent exchange of acetyl against benzyl blocking groups (13 ---} 14) was effected in 
a one-pot operation with benzyl bromide/KOH in THF (81%), and followed by thermal fragmentation 3 (reflux 
in bromobenzene/pyridine for 5 h), which elaborated the 2-acetoxy-L-rhamnal 17 9 via excision of methanol. 

The concluding exposure of 17 to NBS/ethanol gave ulosyl bromide 7 9 in high yield. 
For generation of  L-rhamnosulosyl bromide 8 carrying different protecting groups at 0-3 and 0-4, 

L-rhamnose was first converted into its ct-methylthio 2,3-O-isopropylidene derivative 10 t2, which was 

subjected to benzoylation, TFA-induced deacetonation (---} 11, 83 %), dibutyltin oxide-assisted selective 
benzylation at 0-3, and acetylation (77 % for 11 --} 12). Subsequent exposure of 12 to bromine in dichloro- 
methane (20 min, 0 °C) followed by in situ treatment with methanol/lutidine gave the nicely crystalline 
orthoester 16, which - like its benzylated analog 14 - yielded to thermal fragmentation to give the 2-acetoxy- 
L-rhamnal 19 9; finally treatment with NBS/ethanol smoothly elaborated the desired ulosyl bromide 8. 

Although somewhat lengthy, the conversion L-rhamnose --~ 8 is not unefficient as four of the altogether nine 
steps can be combined into one-pot operations, allowing an overall yield of 25 %. 

The utility of ulosyl bromides 6 -  $ as indirect J3-L-rhanmosyl donors followed from the essential 
[J-specificity attainable in the crucial glycosidation step: under standard Koenigs-Knorr conditions (Ag2CO3 in 
dichloromethane at 25 °C), alcoholysis is complete within 15-30rain, no ct-anomeric products being 
detectable in the reaction mixture by TLC or IH NMR, and the [3-ulosides 20 - 22 are isolable in yields of 80 - 
90 %. Similar results are obtained with diacetone-galactose and with methyl 2,3-O-isopropylidene-ct-L- 

rhamnose or its methylthio analog 10 as the alcohol components. 
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The rhamno/6-deoxy-gluco selectivities obtained in the carbonyl reductions of  glycosiduloses 20 - 22 
confirmed previous findings 3 that the outcome depends on the nature of  the 3-O-protection: uloside 20, on 

exposure to NaBH4 in dichloromethane/methanol (2 h, 0 °C --~ room temperature) gave a 3:1 mixture of the 

L-rhamno (23) and 6-deoxy-L-gluco epimers, whereas hydride reductions of the 3-O-benzylated compounds 21 
and 22 take an essentially stereospecific course to the ~3-L-rhanmosides 24 and 25, no 2-epimer being 
detectable in the reaction mixtures. 

By way of summation, the exploratory results described amply demonstrate the potential of the uloside 
bromide approach for the generation of  13-L-rhamnopyranosidic linkages - an approach that favorably 
compares with existing methodologies t3,t4, in its 13-specific glycosylation even reaching Ziegler's strategy of 
intramolecular [3-L-rhamnosylation via pre-linked donor and aceeptor substrates 14. More elaborate glycosyl 
acceptors, most notably those with notoriously unreactive secondary OH groups, are presently being evaluated 
for glycosylations with 7 and 8, as well as the application of  this methodology to the synthesis of various 
biologically relevant oligosaccharides with [3-L-rhamnose units. These and related efforts will be disclosed in 
due time. 
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