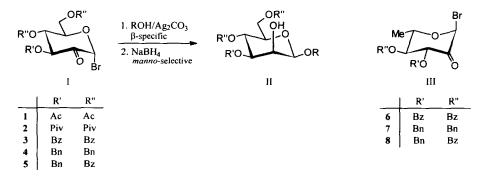


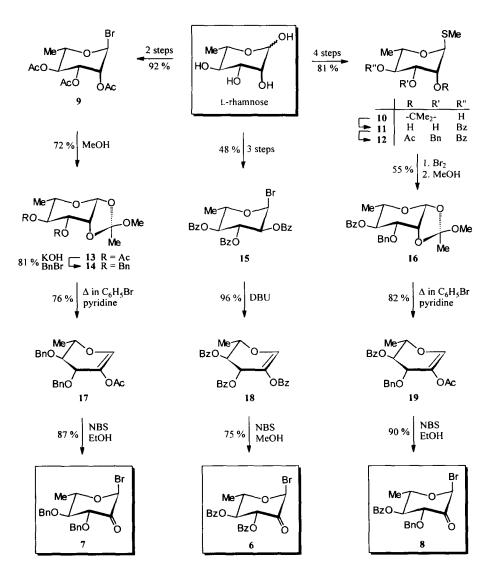
PII: S0040-4039(97)01225-2

Efficient Generation of β-L-Rhamnosidic Linkages via the Ulosyl Bromide Approach


Frieder W. Lichtenthaler* and Thomas W. Metz

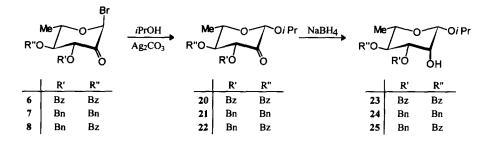
Institut für Organische Chemie, Technische Universität Darmstadt, Petersenstraße 22, D-64287 Darmstadt, Germany

Abstract: Practical protocols have been developed for the acquisition of ulosyl bromides of type III from L-rhamnose, i.e. 6-deoxy- α -L-arabino-2-ketohexosyl bromides 6 - 8. They have high potential as indirect β -L-rhamnosyl donors, as they undergo β -specific glycosidations under Koenigs-Knorr conditions, and carbonyl reductions of the resulting β -L-ulosides proceed with high β -L-rhamno selectivity. © 1997 Elsevier Science Ltd.


For the generation of β -D-mannosidic linkages, the *ulosyl bromide approach*¹ has proved highly expedient, since the 2-oxo-glycosyl (glycos-*ulosyl*) bromides of type I, e.g. **1** - **5**²⁻⁴, are well accessible from glucose and constitute efficient "indirect" β -D-mannosyl donors as they undergo β -specific glycosidations under Koenigs-Knorr conditions²⁻⁴, and the resulting β -D-ulosides are reduced to the β -D-mannosides II with high selectivities, reaching 20:1 to 50:1 *manno/gluco* ratios in cases with 3-O-benzyl groups³. Accordingly, the 3-O-benzyl-protected ulosyl bromides **4** and **5** have quite advantageously been applied to the synthesis of a number of fairly complex trisaccharides with β -D-mannose units^{4,5} as well as a bioactive β -D-mannosylated fungal metabolite⁶.

In view of the various bacterial antigens containing β -L-rhamnopyranose units⁷, ulosyl bromides of type III, i.e. 6-deoxy-L-enantiomers of I, would provide, if fairly well accessible, an expedient protocol for the straightforward synthesis of β -L-rhamnosides which have the additional advantage to accumulate with a free 2-OH amenable to direct further glycosylation. As a consequence, we have opted to evaluate this concept and here present practical syntheses of the ulosyl bromides **6** - **8** from L-rhamnose, as well as proof of their utility as indirect β -L-rhamnosyl donors.

The practical acquisition of the indirect β -L-rhamnosyl donors 6 - 8 relied on L-rhamnose as a most suitable, readily available starting material, and on the 2-acyloxy-L-rhamnals 17 - 19 as key intermediates, as these were expected to smoothly elaborate the desired ulosyl bromides by brief exposure to NBS/methanol^{2,3}.


The preparation of the benzoyl-protected α -L-rhamnosulosyl bromide 6 comprised the conversion of L-rhamnose – by molybdate-catalyzed C-2-epimerization^{8a}, benzoylation, and HBr/HOAc treatment^{8b}, feasible in 48 % overall yield – into the 6-deoxy-L-glucosyl bromide 15, in which HBr-elimination to the 2-benzoyloxy-L-rhamnal 18⁹ could smoothly be effected by DBU treatment. Subsequent exposure to NBS/methanol in dichloromethane (30 min, 25 °C) provided the desired 6 in crystalline form⁹ and in quite satisfactory overall yield (39 %) for the five steps from L-rhamnose.

The 3,4-di-O-benzyl-blocked ulosyl bromide 7 similarly required a five-step sequence from L-rhamnose, involving conversion into its acetobromo derivative 9¹⁰ and then into orthoester 13 by treatment with methanol/lutidine¹¹. Subsequent exchange of acetyl against benzyl blocking groups $(13 \rightarrow 14)$ was effected in a one-pot operation with benzyl bromide/KOH in THF (81 %), and followed by thermal fragmentation³ (reflux in bromobenzene/pyridine for 5 h), which elaborated the 2-acetoxy-L-rhamnal 17⁹ via excision of methanol. The concluding exposure of 17 to NBS/ethanol gave ulosyl bromide 7⁹ in high yield.

For generation of L-rhamnosulosyl bromide 8 carrying different protecting groups at O-3 and O-4, L-rhamnose was first converted into its α -methylthio 2,3-O-isopropylidene derivative 10¹², which was subjected to benzoylation, TFA-induced deacetonation (\rightarrow 11, 83 %), dibutyltin oxide-assisted selective benzylation at O-3, and acetylation (77 % for 11 \rightarrow 12). Subsequent exposure of 12 to bromine in dichloromethane (20 min, 0 °C) followed by in situ treatment with methanol/lutidine gave the nicely crystalline orthoester 16, which – like its benzylated analog 14 – yielded to thermal fragmentation to give the 2-acetoxy-L-rhamnal 19⁹; finally treatment with NBS/ethanol smoothly elaborated the desired ulosyl bromide 8. Although somewhat lengthy, the conversion L-rhamnose \rightarrow 8 is not unefficient as four of the altogether nine steps can be combined into one-pot operations, allowing an overall yield of 25 %.

The utility of ulosyl bromides 6 - 8 as indirect β -L-rhamnosyl donors followed from the essential β -specificity attainable in the crucial glycosidation step: under standard Koenigs-Knorr conditions (Ag₂CO₃ in dichloromethane at 25 °C), alcoholysis is complete within 15-30 min, no α -anomeric products being detectable in the reaction mixture by TLC or ¹H NMR, and the β -ulosides 20 - 22 are isolable in yields of 80 - 90 %. Similar results are obtained with diacetone-galactose and with methyl 2,3-O-isopropylidene- α -L-rhamnose or its methylthio analog 10 as the alcohol components.

The *rhamno*/6-deoxy-*gluco* selectivities obtained in the carbonyl reductions of glycosiduloses 20 - 22 confirmed previous findings³ that the outcome depends on the nature of the 3-O-protection: uloside 20, on exposure to NaBH₄ in dichloromethane/methanol (2 h, 0 °C \rightarrow room temperature) gave a 3:1 mixture of the L-*rhamno* (23) and 6-deoxy-L-*gluco* epimers, whereas hydride reductions of the 3-O-benzylated compounds 21 and 22 take an essentially stereospecific course to the β -L-rhamnosides 24 and 25, no 2-epimer being detectable in the reaction mixtures.

By way of summation, the exploratory results described amply demonstrate the potential of the uloside bromide approach for the generation of β -L-rhamnopyranosidic linkages – an approach that favorably compares with existing methodologies^{13,14}, in its β -specific glycosylation even reaching Ziegler's strategy of intramolecular β -L-rhamnosylation via pre-linked donor and acceptor substrates¹⁴. More elaborate glycosyl acceptors, most notably those with notoriously unreactive secondary OH groups, are presently being evaluated for glycosylations with 7 and 8, as well as the application of this methodology to the synthesis of various biologically relevant oligosaccharides with β -L-rhamnose units. These and related efforts will be disclosed in due time. Acknowledgements. We thank the Fonds der Chemischen Industrie, Frankfurt, and the Südzucker AG Mannheim/Ochsenfurt for financial support.

References and Notes

- 1. For an early review, see: Kaji, E.; Lichtenthaler, F. W. Trends Glycosci. Glycotechnol. 1993, 5, 121-142.
- 2. Lichtenthaler, F. W.; Kläres, U.; Lergenmüller, M.; Schwidetzky, S. Synthesis 1992, 179-184.
- 3. Lichtenthaler, F. W.; Schneider-Adams, T. J. Org. Chem. 1994, 59, 6728-6734.
- 4. Lichtenthaler, F. W.; Kläres, U.; Szurmai, Z.; Werner, B. Carbohydr. Res. 1997, in press.
- 5. Lichtenthaler, F. W.; Schneider-Adams, T.; Immel, S. J. Org. Chem. 1994, 59, 6735-6738.
- 6. Fürstner, A.; Konetzki, I. Tetrahedron 1996, 52, 15071-15078.
- Jones, C. Carbohydr. Res. 1985, 139, 75-83. Richards, J. C.; Perry, M. B. Biochem. Cell Biol. 1988, 66, 758-771; Moreau, M.; Richards, J. C.; Perry, M. B.; Kniskern, P. J. Carbohydr. Res. 1988, 182, 79-99; Can. J. Chem. 1989, 67, 1038-1050. van Dam, J. E. G.; Fleer, A.; Snippe, H; van Leeuwenhoek, A. J. Microbiol. Serol. 1990, 58, 1-47.
- (a) Bilik, V.; Voelter, W.; Bayer, E. Angew. Chem. 1971, 83, 967; Angew. Chem. Int. Ed. Engl. 1971, 10, 909. (b) Kamiya, S.; Esaki, E.; Konishi, F. Agric. Biol. Chem. 1976, 40, 273-276.
- 9. Significant physical data of 6-deoxy- α -L-*arabino*-hexopyranos-2-ulosyl bromides 6 8 and 2-acyloxy-Lrhamnals 17 - 19 (rotations at c = 1 in CHCl₃, ¹H NMR at 300 MHz in CDCl₃):
 - 6: colorless needles (solvent), m.p. 124-125 °C, $[\alpha]_D^{20} = -195.2^\circ$; ¹H NMR δ 1.44 (d, 3H, 6-H₃), 4.65 (qd, 1H, 5-H), 5.64 (dd, 1H, 4-H), 6.44 (d, 1H, 3-H), 6.46 (s, 1H, 1-H), $J_{3,4} = J_{4,5} = 10.3$, $J_{5,6} = 6.3$ Hz. The D-enantiomer of 6 had m.p. 125-126 °C and $[\alpha]_D^{22} = +191.4^\circ$, as well as identical ¹H NMR data¹⁵.
 - 7: syrup, $[\alpha]_D^{20} = -229.2^{\circ}$. $-{}^{1}$ H NMR δ 1.35 (d, 3H, 6-H₃), 3.46 (dd, 1H, 4-H), 4.21 (qd, 1H, 5-H), 4.87 (d, 1H, 3-H), 6.27 (s, 1H, 1-H), $J_{3,4} = J_{4,5} = 9.6$, $J_{5,6} = 6.2$ Hz.
 - 8: syrup, $[\alpha]_D^{20} = -132.5^\circ$; ¹H NMR δ 1.34 (d, 3H, 6-H₃), 4.41 (qd, 1H, 5-H), 4.85 (d, 1H, 3-H), 5.36 (dd, 1H, 4-H), 6.37 (s, 1H, 1-H), $J_{3,4} = 10.2$, $J_{4,5} = 10.1$, $J_{5,6} = 6.3$ Hz.
 - 17: syrup, $[\alpha]_D^{20} = -11.6^{\circ}$.
 - **18**: m.p. 95-96 °C, $[\alpha]_D^{20} = +176.8^{\circ}$. $-{}^{1}$ H NMR δ 1.57 (d, 3H, 6-H₃), 4.56 (qd, 1H, 5-H), 5.56 (dd, 1H, 4-H), 6.11 (dd, 1H, 3-H), 6.90 (d, 1H, 1-H), $J_{1,3} = 0.6$, $J_{3,4} = 4.4$, $J_{4,5} = 5.6$, $J_{5,6} = 6.8$ Hz. **19**: sump $[\alpha]_D^{20} = +37.7^{\circ}$
 - **19**: syrup, $[\alpha]_D^{20} = +37.7^\circ$.
- 10. Roth, W.; Pigman, W. Methods Carbohydr. Chem. 1963, 2, 407.
- (a) Mazurek, M.; Perlin, A. S. Can. J. Chem. 1965, 43, 1918-1923. (b) Bundle, D. R.; Josephson, S. Can. J. Chem. 1979, 57, 662-668.
- 12. Pozsgay, V.; Jennings, H. J. J. Org. Chem. 1988, 53, 4042-4052.
- Bakinovsky, L. J.; Balan, N. F.; Shashkov, S. S.; Kochetkov, N. K. Carbohydr. Res. 1980, 84, 225-235. Iversen, T.; Bundle, D. R. Carbohydr. Res. 1980, 84, C13-C15. – Paulsen, H.; Kutschker, W.; Lockhoff, O. Chem. Ber. 1981, 114, 3233-3241; Carbohydr. Res. 1983, 120, 25-42. – van Steijn, A. M. P.; Kamerling, J. P.; Vliegenthart, J. F. G. Carbohydr. Chem. 1992, 11, 665-689.
- Lau, R.; Schüle, G.; Schwaneberg, U.; Ziegler, T. Liebigs Ann. 1995, 1745-1754. Schüle, G.; Ziegler, T. Liebigs Ann. 1996, 1599-1607.
- Lichtenthaler, F. W.; Cuny, E.; Weprek, S. Angew. Chem. 1983, 95, 906-907; Angew. Chem. Int. Ed. Engl. 1983, 22, 891-892.